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How choosy should | be? The relative
searching time predicts evolution of
choosiness under direct sexual selection
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Unstitut des Sciences de I'Evolution, Université Montpellier 1l, CNRS, Montpellier 34095, France
2Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany

Most theoretical research in sexual selection has focused on indirect selection.
However, empirical studies have not strongly supported indirect selec-
tion. A well-established finding is that direct benefits and costs exert a strong
influence on the evolution of mate choice. We present an analytical model in
which unilateral mate choice evolves solely by direct sexual selection on choosi-
ness. We show this is sufficient to generate the evolution of all possible levels of
choosiness, because of the fundamental trade-off between mating rate and
mating benefits. We further identify the relative searching time (RST, i.e. the pro-
portion of lifetime devoted to searching for mates) as a predictor of the effect of
any variable affecting the mating rate on the evolution of choosiness. We show
that the RST: (i) allows one to make predictions about the evolution of choosiness
across a wide variety of mating systems; (ii) encompasses all alternative variables
proposed thus far to explain the evolution of choosiness by direct sexual selection;
and (iii) can be empirically used to infer qualitative differences in choosiness.

1. Introduction

Understanding the evolution of mate choice remains a theoretical challenge
[1,2] despite much empirical support for its adaptive significance [3,4]. This dis-
crepancy may have emerged because most theoretical works have focused on
complex scenarios, whereas the analysis of common and simple mechanisms
has attracted little interest among theoreticians [5].

In particular, most models have studied the evolution of female choice by
sexual selection when selection favours a male’s ornament and/or quality, but
not directly the genes responsible for mate choice. Famous examples of such indir-
ect selection models are the Fisher—Lande—Kirkpatrick model [6-8] and the
so-called good-genes models [9-12]. These models imply the existence of benefits
that enhance the reproductive success not of the choosy individuals themselves,
but of their offspring. However, only a few empirical studies have identified
such indirect benefits [13—18]. In addition, attempts have been made to estimate
the strength of indirect selection in natural populations [19-21], and they find
no significant evidence for its impact on the evolution of mate choice [22]. By con-
trast, it is well established that mate choice is directly selected in a wide variety of
organisms [3,23]. Moreover, this direct selection may exert a greater influence on
the evolution of choice than indirect selection [24-26]. Direct selection originates
from direct benefits such as increased fertility, parental care, protection, territory,
food, nuptial gifts or risk reduction (for a review see [3], ch. 8).

Direct benefits imply that choice can be favoured by sexual selection
(defined as the differences in reproductive success arising as a result of both
the number of matings and the quality of mates). Nonetheless, direct benefits
may be counteracted by various costs of mate choice, and this may explain
why the intensity of choice (i.e. choosiness) varies widely both between and
within species [27]. Examples for costs of choosiness include: the increased preda-
tion risk caused by mate searching [11,28], the risk of being injured [29] or eaten by
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mates [30] and the risks inherent to fighting with same-sex con-
specifics [31-33]. These costs may affect the survival of choosy
individuals, and different levels of choosiness can evolve
according to the respective intensities of these costs and direct
benefits. However, even when direct benefits are present and
costs on survival are absent, a maximal level of choosiness
may not be selected, because choosiness is already associated
with an unescapable cost. Indeed, the time spent searching for
mates increases systematically with choosiness, and thus
reduces the mating rate, because the choosier an individual is,
the rarer are the individuals qualifying as mates [34]. Moreover,
this temporal cost may be enhanced by the fact that high-quality
mates have already mated with other choosers and are thus una-
vailable for some time.

That choosiness is intrinsically associated with an increase
in mating benefits and a decrease in mating rate implies a
trade-off between these two fitness components [29,30,35-37].
Here, we study the influence of this trade-off, by building an
analytical model in which choosiness evolves only by direct
sexual selection, contrary to previous studies that have also
included other selective pressures [28-30,36]. The trade-off
must operate in most cases of mate choice, because it only
requires that: (i) mates vary with respect to the benefits they
can supply, and (ii) the mating rate varies according to the
level of choosiness. We choose to explore the impact of general
features influencing the trade-off (the intersexual encounter
rate, the length of latency after mating, the lifetime and the
distribution of qualities among mates) in a simple behaviou-
ral context where choice is unilateral (i.e. only one sex can be
choosy) without condition dependence. This allows us to
describe the evolution of choosiness in a wide range of situ-
ations. As such, our approach complements the study by
Johnstone et al. [38], who focused on mating patterns emerging
from mutual condition-dependent mate choice and generalizes
models that have assumed either males to be always available
for mating [39], or individuals to mate only once [40-45]. Our
study reveals the full range of choosiness that direct sexual selec-
tion is able to generate. This extends approaches that have
studied the evolution of choosiness without investigating
the values that choosiness can attain at the evolutionary equili-
brium, either by distinguishing only between choosy and
non-choosy individuals [46,47], or by calculating the optimal
choosiness without considering that it must be constrained by
the choosiness of other same-sex individuals [35].

Here, we show that direct sexual selection is sufficient to
generate the evolution of all possible levels of choosiness. We
further find that under direct sexual selection, the evolution
of choosiness can be predicted from the relative searching
time (RST, i.e. the proportion of lifetime devoted to search-
ing for mates), which is a more general predictor than
previously proposed ones.

2. The model
(a) The life cycle

We build a discrete time model of an infinite population
at demographic equilibrium. We consider two sexes with
a sex ratio of 1:1. For both sexes, the lifetime of individuals
is set by the probability s of surviving from one time step to
the next, which is identical for all individuals and constant
across their entire life. The average lifetime is thus 1/(1 — s)
(the time step during which an individual dies is included

in lifetime). At each time step, each individual randomly [ 2 |

encounters an opposite-sex individual with probability e. We
assume that each individual can only mate with one indivi-
dual per time step, but mating several times over the lifetime
is possible.

Our model corresponds to a situation of unilateral choice in
which females choose males according to their quality but
males will willingly mate with any female. Each male is charac-
terized by a value of quality g between 0 and 1, which is strictly
environmentally determined. This prevents the emergence of
linkage disequilibrium, and thus indirect selection, in our
model. The distribution of male quality is constant across gen-
erations. We allow this distribution to take any form, but the
following calculations will illustrate the case of a uniform dis-
tribution (see the electronic supplementary material for the
general case). Each female is characterized by a level of choosi-
ness ¢, which represents the minimal male quality the female
will accept. We assume that this threshold is entirely geneti-
cally determined by a single locus, for which there are an
infinite number of possible alleles (any real number between
0 and 1). We also assume that females make no error in asses-
sing the quality of males, so that a female with choosiness ¢
only mates with males with quality g > ¢.

After mating, paired individuals enter a latency period
(also referred to as ‘time out’ period in some papers: e.g. [46])
and become unavailable for mating. Biologically, latency can
result from parental care, gamete depletion, mate guarding
or any other state that prevents individuals from remating
instantly. The length of this period can be expressed through
a probability of entering or remaining in latency, denoted I.
This formalism eases comparisons between the effects of the
different parameters and leads to results qualitatively similar
to those obtained when a fixed duration of latency is modelled.
We allow [ to differ between females (I¢) and males (I ;). More-
over, we assume that the durations of latency are independent
between the female and the male of a given mating pair (but
see the electronic supplementary material for modelling the
opposite case). At the end of this latency period, individuals
become available for mating again.

A female switches from being available for mating to una-
vailable upon meeting all of the following conditions: (i) she
does not die (with probability s), (ii) she encounters a male (e),
(iii) this male is available and of sufficient quality for mating
(with this probability denoted as mg, which is a function of
the other parameters), and (iv) she enters into latency (o).
Thus, the transition probability from the available state to the
unavailable state between two time steps equals (semg Io). An
unavailable female remains unavailable with probability slo,
i.e. when she does not die (s) and remains in latency (lo). Alter-
natively, an unavailable female becomes available again with
probability s(1—Io). Finally, there are two possibilities for an
available female to remain in this state: either she mates
but does not engage in latency (semo(1—Ig)), or she does
not mate because of failing to encounter a potential mate or
because the male is unavailable or of too low quality
(s(1 —e) +se(1 —mg) =s(1 —emg)). Hence, the transition
probabilities between the states of the female life cycle are
given in figure 1, and are summarized in the following matrix:

available unavailable
available (s(l —emolo) semglg

s1—1lo)  slo @1)

~ unavailable
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Figure 1. The life cycle of a female. At each time step: s is the probability
that she survives, e the probability that she encounters a male, mo the prob-
ability that she mates with this male and /o the probability that she engages
or remains in latency.

(b) Calculating mating probability

We now describe the relationship between the mating prob-
ability of a focal female (mg) and the other parameters.
First, this mating probability depends on the probability
that the focal female finds the male she encounters to be
acceptable, thus on her choosiness (¢). Second, mg also
depends on the availability of males, which in turn depends
on the choosiness of other females in the population. Indeed,
a male who is encountered can be in latency after a previous
mating and thus unavailable for a new mating. To take this
competition for mates into account, we use the framework
of mutants and residents [48], assuming that all females in
the population (i.e. residents) show the same level of choosi-
ness (¢,,) except for a focal female (i.e. the mutant), whose
choosiness is ¢. Two cases need to be considered. If the
mutant female is choosier than residents (¢ > ¢), the
males of sufficient quality to be chosen (g > ¢) may have pre-
viously mated with a resident female and still be in latency.
We denote the probability for such a male to be available
as ag. If the choosiness of the mutant is lower than the resi-
dent one (¢ < ¢;), then males whose quality ranges from ¢
to ¢, are never chosen by resident females and are always
available for mating with the mutant female. Males with
quality higher than resident choosiness (7 > ¢,,) are available
with probability a5. Thus, in the case of a uniform distri-
bution of male quality, the probability of mating for a
mutant female with choosiness ¢ is

if 6> gy,

1—
o — {( g it o 2.2)

bp— b+ (1 - dlag

Using the property that the life cycle forms a Markov chain
for which death is an absorbing state, we obtain from the matrix
in equation (2.1) (see the electronic supplementary material)

1
 1+seaglg/(1—slg)
o — 1
? T +se(l— bpagle /(1 —slo)’

ag
2.3)

where ag is the availability of resident females. Indeed, both
the male and the female must be available to form a mating
pair, thus ag and ag are necessarily related. By solving this
system, we obtain the analytical expression for ay (see the
electronic supplementary material).

(c) Calculating fecundity

We consider lifetime fecundity of females, i.e. the number of
offspring produced over all mating events. We assume that
mating with a male i with quality g; is associated with a
direct benefit b; = g; in terms of female reproductive success.
We also consider that the number of offspring obtained from
any mating event depends neither on the number of previous
matings nor on the number of offspring obtained from these
previous matings. Hence, the expected fecundity F(¢, ¢,,) of a
female of choosiness ¢ in a resident population of choosiness
¢p is the product of her expected mating rate r(¢, ¢p),
her expected benefit per mating b(¢, ¢,) and her expected
lifetime (see the electronic supplementary material):

F@, ) = (6, ) b, ) 1. 2.4)

The expected mating rate r(¢, ¢,) equals the probability
that at a given time step the mutant female is available for
mating (2¢), multiplied by the probability that she finds a
male and mates with him at this time step (semg). In the
case of a mutant of choosiness equal to or higher than resi-
dent choosiness and a uniform distribution of male quality,
we obtain from equations (2.2) and (2.4) (see the electronic
supplementary material for the general case)

F > by, b,)

B se(1 — Pp)ag 1+¢ 1
~ 1+se(l— dagle/(1—slg) 2 1-—s

(2.5)

(d) The evolution of choosiness and the trade-off

We have found that choosiness always evolves until it reaches
an evolutionarily stable strategy (ESS), denoted ¢*, regardless
of the values of the parameters and of the distribution of
mate quality (see the electronic supplementary material).
This means polymorphism is never selected in our model.
The derivative of mutant fecundity with respect to choosiness
is null at ESS. Because fecundity is the product of the mating
rate, the mating benefits and the lifetime (see equation (2.4)),
and lifetime is not affected by choosiness, the ESS is attained
when the relative increase B (B* at ESS) in the mating benefits
equals the relative decrease R (R* at ESS) in the mating rate in
absolute value, i.e. when

. 1 ob(d, &, = &)
TWb=¢ =) b |y
1 o, by = )

=0 =) 06y @0
This means the evolution of choosiness depends on the form
of the trade-off between the mating rate and mating benefits
(electronic supplementary material, figure S1).

We have calculated all the combinations of mating rate
and mating benefits that result from all possible ESSs of choo-
siness and have found that our model allows for very
different combinations of these fecundity components to
evolve (figure 2). The distribution of these combinations
depends on the parameters of our model (e, s, lg and I5)
and on the distribution of mate quality. Some combinations
correspond to a restricted set of parameter values, whereas
others can occur over a much wider range of situations. For
instance, in the case of a uniform distribution of mate quality,
ESSs in which females have a high mating rate but can mate
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Figure 2. The mean value of each parameter for the different values of the trade-off between mating rate and mating benefits at ESS. The mating rate r is plotted against
the mating benefits b. The space below the diagonal (grey-+coloured area) corresponds to the possible combinations of r and b, and the coloured area represents
evolutionarily stable cases. The colour scale indicates the mean value of each parameter for all possible combinations of r and b at ESS, because the same combination can
be attained by different sets of parameters. These figures have been obtained by calculating r and b in 10° cases that explore the entire range of the parameters (i.e. e, s, lo
and /5 varying between 0 and 1 whereas ¢ = ¢, = ¢*). The quality of males follows a uniform distribution. (Online version in colour.)

with low-quality males are possible only if encounter and
survival rates are high while latency rates are low for both
sexes. By contrast, ESSs in which females have a low
mating rate but mate only with high-quality males are poss-
ible for all values of encounter and male latency rates,
provided that the survival and female latency rates are
high. Importantly, any level of choosiness can be an ESS in
our model, even if we consider only one distribution of
mate quality (e.g. uniform).

(e) The evolution of choosiness and the relative
searching time

We have found that the effect on the evolution of choosiness
of any biological or ecological variable z affecting the mating
rate r but not the mating benefits b is related to its effect on
the relative amount of lifetime spent searching for mates,
which we call the RST. Because we have assumed choosiness
to be constant throughout lifetime, the RST can also be
defined as the proportion of time of one reproduction event
which is devoted to searching for mates. Using the ‘time
in-time out’ terminology (which refers to the time spent,
respectively, in the states ‘available for mating’ and

‘unavailable for mating’: e.g. [46]), the RST would be written
as the ratio ‘time in’/(‘time in” + "time out’).

This result rests on two computation steps that we
describe briefly here (see the electronic supplementary
material for details). First, z affects the relative decrease R
in the mating rate, but not the relative increase B in the
mating benefits. Because the ESS is reached when B* =— R*
(see equation (2.6)), the effect of z on the evolution of
choosiness may therefore be deduced from its effect on R*.
Indeed, we find that the change d¢*/dz in choosiness at ESS
caused by the variation of z has the same sign as the change
in the relative decrease in the mating rate at ESS (R*) with z.
This change is formally defined as a partial derivative
OR*/0z. In particular, although ¢* is a function of z and
appears in the expression of R* (see equation (2.6)), ¢* is con-
sidered independent of z in this partial derivative. Thus,
OR*/0z does not include variation owing to the evolution of
choosiness and therefore represents the sensitivity [49] of R*
with respect to z. Second, at ESS the mating rate r is the
inverse of the mean duration of one reproductive event. With
some calculations, we find from this property that the sensi-
tivity of the RST at ESS (ORST'/0z) has the opposite sign
of the sensitivity of the relative decrease in the mating rate
at ESS (OR*/0z). Hence, the change in choosiness has the
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This result rests on the following assumptions: (i) z does
not affect the distribution of mate quality, regardless of the
form of the latter; (ii) choosiness does not affect survival;
and (iii) choosiness does not affect the time spent in one
latency period. This result may therefore be extended to
any system of mate choice satisfying these assumptions.
Because all our model parameters affect the mating rate but
not the mating benefits, we can use the sensitivity of the RST to
predict their effect on choosiness at ESS (figure 3). When female
latency probability (Io) increases, the time females spend in
latency increases, which decreases the RST because the lifetime
is constant. Therefore, female latency selects for choosiness.
When male latency probability (I5) increases, the time females
spend before encountering a male who is available increases,
which increases the RST. Therefore, male latency reduces the
choosiness at ESS. When encounter probability (e) increases,

27)

the time females spend before encountering a potential mate
decreases, which decreases the RST. This implies that a higher
encounter rate selects for greater choosiness. Finally, when sur-
vival probability (s) increases, the proportion of lifetime spent in
latency increases with s in both sexes. This is because when
death occurs, the individual is always replaced by an available
one, whether the dead one was in latency or not. Then, when
the time spent in latency increases in one sex, the time spent
searching for mates increases for individuals in the other sex.
The resulting effect on the RST depends on the values assigned
to the latency parameters. For instance, if male latency prob-
ability is much lower than female latency probability, the
increase with s in the time spent in latency outweighs the
increase in the time spent searching for mates in females, lead-
ing to a decrease in female RST. Thus an increase in the
survival probability selects for increased choosiness in that
case. The opposite result is obtained if male latency probability
is much higher than female latency probability.

Previous models have proposed other predictors for
the evolution of choosiness under direct sexual selection,
including the time invested in breeding [37,38], the adult
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Figure 4. Comparison of the predictive power of the RST, the OSR and the (0B.
The values of the RST, the OSR, the (OB and choosiness at ESS are plotted for
three different parameter settings (z;: e = 0.1, lo = 0.8 and |5 = 07; 2;:
e=01Jlo=07and /5 =06 z:e=109 lo =06 and [ =07; s
equals 0.999 and the distribution of quality is uniform in all cases). During
the change z; to z,, the three metrics correctly predict the variation of choosi-
ness at ESS, while during the change z; to z3, only the RST yields correct
predictions. Note that when computing the RST, the value of choosiness
remains fixed to d’;' in order to represent the sensitivity of the RST.

sex ratio [50], the operational sex ratio (OSR, [51]) and the cost
of breeding (COB, [46,47]). Under our formalism, the effects
of the two former predictors can be entirely captured by,
respectively, considering a change in I and ¢, while the two
latter predictors can be, respectively, written as
(ag(1 — bp) + ¢p)/a9 and lo(1 —s)/(1 —slo) (see the elec-
tronic supplementary material). This means that for a fixed
value of choosiness at ESS, they all affect the mating rate
but not the mating benefits and are thus encompassed by
the sensitivity of the RST. In particular, the OSR and the
COB have both been proposed to be positively correlated
with choosiness at ESS. Any change in the OSR or the COB
explaining a change in choosiness at ESS will be correctly
captured by a change in the RST (e.g. when latency decreases
for both sexes, as during the change z; to z; in figure 4). How-
ever, the RST can also vary and thus predict correctly the
evolution of choosiness, while the OSR and the COB
remain constant or change in the opposite way as choosiness
(e.g. when the encounter rate increases while female latency
decreases, as during the change z; to z3 in figure 4).

3. Discussion

We have modelled the evolution of mate choice in a very
simple case: mate choice is (i) unilateral, (ii) based on one
cue of quality that is directly accessible, (iii) expressed as a
fixed threshold with no condition dependence, (iv) provides
direct benefits alone and thus only evolves by direct selection,
and (v) does not affect survival and thus only evolves by
sexual selection. We have found that despite this simplicity,
the model is sufficient to generate the evolution of all possible
levels of choosiness. This is because the form of the trade-off
between mating rate and mating benefits varies greatly accord-
ing to the biological context (here described by the encounter
rate, the lifetime, the time spent in latency and the distribution
of quality among mates). To our knowledge, our model is the

first to compute the possible levels of choosiness one can n

observe at the equilibrium when only direct sexual selection
operates. As such, we supplement previous studies that have
qualitatively explored the evolutionary effect of this trade-
off [38,39,41]. In addition, we have identified a predictor for
the evolution of choosiness, the sensitivity of the RST, which
encompasses all previously proposed metrics.

Our model predicts the existence of an ESS for choosiness,
regardless of the values of the four parameters of the model
and of the distribution of mate quality. Hence, we extend the
results of Gowaty & Hubbell [39] who also found an ESS for
choosiness but in the particular case of the absence of compe-
tition for mates (by assuming a null latency for males). By
contrast, in our model some competition emerges as the
result of the unavailability of certain mates. This competition
is similar to scramble competition in community ecology,
which results from the consumption of a resource (here,
the mates) by other competitors (here, the other conspecific
choosers) without physical interference between the com-
petitors. The importance of scramble competition in sexual
selection has been demonstrated, but it has often been con-
sidered in the non-choosing sex (e.g. [52—-54]), while here
we focus on the competition between choosers. This kind of
competition is known to reduce choosiness in several species
(e.g. [55—-57]), which may explain why even in the absence
of survival costs on choosiness, low levels of choosiness
can evolve. Moreover, combined with condition-dependent
expression of choosiness [58], this may select for plasticity
or polymorphism in choosiness [31-33,38,41].

We have shown that the evolution of choosiness can be pre-
dicted from the RST (i.e. the proportion of lifetime devoted to
searching for mates). Formally, we have found that the effect
on choosiness at the ESS of any variable affecting the mating
rate without affecting the mating benefits (regardless of the
distribution of the latter) is opposite to the sensitivity of
the RST with respect to this variable, i.e. the variation of the
RST is directly attributable to a small increase in this variable.
Importantly, the sensitivity of the RST does not include
variation of the RST caused by a change in the value of choosi-
ness. We have found that this result can be applied to any system
of mate choice in which choosiness does not affect (i) survival,
and (ii) the time spent in one latency period. This may reflect
many different biological situations. We have assumed that
only females choose their mates, but our model can also effec-
tively describe cases of male choice. Indeed, the only
difference between the sexes concerns the length of latency,
which is encoded in an independent parameter for each sex.
Replacing male and female parameters in the equations of the
model is therefore sufficient for switching from female choice
to male choice. Moreover, depending on the relative lengths of
latency period and lifetime, our model is able to represent the
entire range of mating rates existing in nature, from very low
(e.g. because of a very low encounter rate, such as in redback spi-
ders [59]) to very high (e.g. because of a very short latency
period, such as in stalk-eyed flies [60]).

We have found that previously proposed predictors such
as the time invested in breeding [37,38], the adult sex ratio
[50], the OSR [51] and the COB [46,47] are all encompassed
by the RST. This means that any prediction about the evolution
of choosiness made with one of these variables can be deduced
from the sensitivity of the RST. Conversely, we have identified
cases in which a variation of the RST correctly predicts the
change in choosiness at ESS while other predictors remain
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constant or yield opposite predictions. The failure of these
other predictors is known empirically: e.g. a male-biased
OSR can be associated with male choosiness higher than
female choosiness in several species [61-63]. We argue that
in such situations, the RST will be able to predict correctly
the variation of choosiness, provided that the conditions
upon which the RST rests are satisfied. In particular, the RST
may be no longer sufficient if choosiness significantly affects
survival. Nonetheless, the aforementioned predictors have to
be used under the same restrictive conditions as for the RST.
This means that when choosiness evolves solely by direct
sexual selection, the sensitivity of the RST is the most general
predictor among those that have been proposed thus far.

Computing the sensitivity of the RST allows one to
make predictions about the effects of our parameters on the
evolution of choosiness. If the sensitivity of the RST with
respect to a given parameter is positive, an increase in the
value of this parameter will decrease the level of choosiness
at ESS, and vice versa. Focusing on the sign of the sensitivity
of the RST often makes predictions more intuitive than if the
RST was ignored. For instance, it makes sense that an increase
in the encounter rate or the latency of choosers leads to a
decrease in the RST. This explains why these two parameters
act positively on the value of choosiness at ESS, which is
empirically attested (choosiness increases with encounter
rate [64-66], and decreases with reproduction rate, i.e.
increases with latency [67,68]). The similar effect of these
two parameters had been already shown by previous
models [28,35,38,39,41,46,47], and the RST provides a unified
explanation for these results.

Beyond the effect of these parameters, measuring the sen-
sitivity of the RST in nature can be used to predict the effect
of more complex biological or ecological variables on choosi-
ness. Let us consider the impact of density, in the particular
case of mating systems with nuptial prey gifts given by
males to females, which is common in insects [69]. In this
context, an increase in density can select for female choosi-
ness by increasing the encounter rate, as it has been shown
in a scorpionfly [70]. However, the opposite effect has
been observed in Mormon crickets [71]: density was nega-
tively correlated with choosiness, because it increases
food competition between males and thus the time necessary
to find prey, which corresponds to an increase in male
latency. This example shows that the effect of the target vari-
able on choosiness is not always trivial to predict. In such
cases, measuring the sensitivity of the RST with respect to
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