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Supplemental Background 

Ebola virus has first been identified in wild apes in 1994, when 8 individuals of a 43 
individual chimpanzee community were affected in Ivory Coast [S1]. Since then, wild ape 
mortality has been reported during most of human outbreaks in eastern Gabon and north-
western Congo [S2]. An animal mortality monitoring network created in 2001 discovered in 
this area 98 wild animal carcasses from August 2001 to June 2003 [S2], 65 of which were 
great apes. Among all the carcasses, 21 were tested and 14 (of which 13 apes and 1 duiker) 
were found to be EBOV-positive. These results suggest that Ebola may severely affect great 
ape populations. 

Estimating Ebola-induced mortality in wild apes is however a difficult task. Two types 
of methods have been used. The first consists in comparing results of pre-epidemic and post-
epidemic nest counts along transects or ‘paths of least resistance’. To our knowledge this 
methodology has been used twice, in Gabon and in Republic of the Congo [S3,S4]. Surveys 
conducted in 1998-2000 in Minkébé forest block (Gabon) after Mékouka (1994) and 
Mayibout 2 (1996) human Ebola outbreaks, revealed a decrease in the ape population of more 
than 90% since 1990 [S3]. Another study based on this methodology, led in Lossi Gorilla 
Sanctuary (Republic of the Congo) after 2001–2 outbreak, showed a lower decrease of 56% 
of a gorilla population [S4], which may be explained by the fact that this area was only 
partially affected. The second method involves the visual identification of individuals of a 
population before and after an epidemic. To our knowledge, this approach has been used only 
once before, in Lossi, where 8 groups of gorillas have been monitored before, during and after 
the outbreak cited above [S4,S5]. None of these groups has been seen since the end of the 
outbreak, revealing that group EBOV mortality was probably very high [S4]. However, the 
mortality rate of solitary males remains unknown. None of these studies has investigated the 
way EBOV spreads in a population of great apes. 
 
Supplemental Experimental Procedures 
Data collection 

The Lokoué observation site is a 4 ha swampy clearing close to Lokoué river, in the 
east of Odzala-Kokoua National Park (Figure S1). No human activity, including hunting, has 
been reported in this site since the study began. Large mammals, including elephants 
(Loxodonta africana cyclotis), buffalos (Syncerus cafer nanus), antelopes (Tragelaphus 
eurycerus and Tragelaphus spekei) and gorillas (Gorilla gorilla gorilla) frequently visit the 
clearing to feed on herbaceous vegetation. Lokoué site is around 60 km from the site where 
the carcass that tested positive for EBOV in June 2003 was found (fig. S1). 

From October 4 2001 to June 24 2005 (study period of 1,360 days), the clearing was 
watched for 699 days, 9 hours a day. Before the outbreak, gorillas were seen on most (94.5%) 
observation days. Visits lasted on average 2 h 28 min (st.dev.: 1 h 43 min), which in addition 
to the relative small surface of the clearing allowed a reliable morphology-based identification 
of social units. 

Face shape, body shape and pelage coloration have proved to be useful individual 
identification criteria [S6,S7]. Powerful spotting scopes, binoculars and a video camera were 
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used to identify gorillas individually. When instantaneous identification was uncertain, 
gorillas were photographed using a numeric reflex camera equipped with a 1200 mm/f8 lens. 
Photos were subsequently compared with a complete numeric picture database. When 
necessary, sketches were also drawn. Less than 10% of groups or solitary males could not be 
identified, in general because they made very furtive visits. 

All groups included a single mature male (the silverback), which was chosen as the 
reference for the identity of the group. This allowed a clear definition of the groups in 
situations where individuals transferred between groups. In 2001–2, 45 groups and 31 solitary 
males, that is 76 units, were thus identified [S6]. All but 8 of the 45 groups included adult 
females (these groups were therefore called breeding groups). Solitary males were either 
mature males or young adult males (blackbacks).  
 
Data transformation 

In the statistical analysis we performed (see below), the binary variable 
‘presence/absence of an individual on a particular day’ was the response variable. Data on 
individuals belonging to a given group were then not independent. Therefore, all group-living 
individuals except silverbacks were excluded. The initial dataset was then a record of the 
presence/absence of 53 solitary males and 56 group silverbacks, that is 109 individuals, on 
each day of the 1,360 day long period of the study. 

This corresponds to 109 social units, a higher number than that observed in 2001–2. 
This is simply due to the continuous turnover of the population. Lokoué population is open, 
with social units appearing and disappearing. 

Statistical modelling based on a 1,360×109 matrix was computationally excessively 
time-expensive. Thus sighting occasions were pooled for each 10-day period, as described 
[S8], finally resulting in a 136×109 matrix dataset. 
 
Statistical modelling: general framework 

A capture–recapture (CR) modelling approach was adopted. CR models take into 
account both the variation of the sighting probability of living individuals (due to season, for 
example) and the variation of the survival rate of individuals, respectively noted p and ϕ , to 
explain total variation in the sighting probability of individuals. Here, two factors possibly 
influencing p and ϕ  were considered: time (t) and class (g). Values of t ranged from 1 
(second 10-day period) to 135 (last 10-day period). Parameter g distinguished two classes of 
individuals: solitary males and group silverbacks. 

As there is an extensive literature dedicated to the mathematical design of CR models 
(e.g., [S9,S10]), we focus below on the particularities of the present model. 

 
The first step was goodness-of-fit (GOF) testing of the Cormack–Jolly–Seber (CJS) 

model [S9]. This model (notation: * *,t g t gpϕ ), makes the assumption that within a given class, 
survival rate (ϕ ) and probability of sighting (p) vary solely according to time. Moreover, all 
living individuals of a class are assumed to have equal capture probabilities and survival rates 
at a given sighting occasion t. U-CARE v2.0 software [S11] was used to perform GOF tests 
on contingency tables. GOF testing of the CJS model is decomposed into four components 
[S12–S14]. All those components except “2.Ct” component (‘trap-happiness’, ) were 
non-significant in our case. The significance of test ‘2.Ct’ indicated that individuals sighted 
on a particular occasion tended to be sighted again on the following occasion more frequently 
than expected. This phenomenon is called trap-dependence [S13]. Basically, individuals 
visiting the clearing on a particular day were more likely to be sighted again during the 
following few days, which translated into an immediate trap-dependence effect after the 

410−<P
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pooling transformation. We modelled this effect as suggested in ref. [S13], by inserting an 
additional parameter dp in the CJS model, such that : 

logit( ) logit( )
ttrap t tp p dp= +  

or e
1 (e 1

t

t t

dp
t

trap dp
t

pp
p

=
)+ −

 

where  denotes the probability for an individual sighted at time 
ttrapp 1−t  and alive at time t 

to be sighted again at time t. tp  is the probability for an individual not sighted at time 1−t  
and alive at time t to be sighted at time t.  represents trap-dependence at time t. In our case 
(trap-happiness),  is expected to be positive. Computing the additive effect of trap-
dependence on a logit scale is convenient since it constrains 

tdp

tdp
1

ttrapp <  whatever the value of 
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In the first model, p, ϕ  and the trap-dependence were class-dependent and time-

dependent. This model is denoted * * *,t g t g mpϕ  [S13], where m denotes the trap-dependence. 
For this model and following ones, a computer software called EpiFit was developed to obtain 
maximum likelihood estimates of parameters. The maximisation algorithm of EpiFit was 
adapted from the Metropolis algorithm used in ref. [S15]. It was extensively tested using 
simulated datasets. This software also provided profile likelihood estimates of confidence 
intervals of parameters. 

AIC-based simplification of p parametrization led to retain the more parsimonious 
model *,t g m t gp ϕ+ +  (Table S1). Time is likely to have an effect on sighting probability either 
through environmental variation (e.g., weather or season) or through variation of the presence 
of observers on the platform. For instance, if observers were absent two days during a 10-day 
period, the probability of sighting at that occasion was expected to be lower than if observers 
were present during all days of the 10-day periods. To control for this factor, tp  was 
corrected, such that: 

101 (1 )
t

t

x

pres tp p= − − , 
with : corrected sighting probability at time t, 

tpresp tp : sighting probability expected if 
presence were permanent and tx : number of days of effective presence per pooling interval. 
The resulting model allowed us to reduce the number of p parameters by maintaining tp  
constant over three consecutive occasions (Table S1). With 10-day pooling intervals, this 
means that sighting probability was allowed to vary every 30 days. 
 
Statistical modelling: epidemiological models 

In order to investigate the way Ebola virus spread in Lokoué population, ϕ  was 
constrained by two epidemiological models. These models were designed following recent 
literature on Ebola epidemiology [S2,S4,S16–S20]. 

The first model, denoted model SEIR2, assumed that at the very beginning of the 
epidemic a small number of individuals got contaminated, for instance after coming into 
contact with the reservoir or with infectious apes from a neighbouring area. These index cases 
then contaminated other individuals, and so on (see Figure 1 in the main paper). This scenario 
has not received much attention for two main reasons. First, infectivity would be too short-
lived and physical contacts between social units would be to rare to allow an ape-to-ape 
spread of the virus [S4]. Second, the detection of different strains of Ebola virus in gorilla 
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carcasses during one outbreak would also argue against this hypothesis [S4]. However, this 
last argument has recently been challenged [S19], and a quantitative model would have been 
required to sustain the first one. 

The second model, named model Spillover2, assumed that during the epidemic, ape-
to-ape transmission was by far less important than reservoir-to-ape transmission (Figure 1). 
To date this scenario has received the larger support [S2,S4,S17]. 

 
Model SEIR2 
 
This model was derived from the classical SEIR model initially designed to describe 

epidemics in close populations (e.g., [S21]). The SEIR model categorizes individuals of a 
finite population according to infectious status as susceptible (S), exposed (E), infectious (I) 
or recovered (R). We adapted this model to the case of an open population divided into two 
classes of individuals. As the EBOV recovery rate is less than 20% in humans, even with 
medical cares, it is likely to be very low in gorillas. Thus, the recovered compartment (R) was 
suppressed and a ‘dead, not infectious’ compartment (M) was created (Figure 1). Note that the 
compartment I includes infectious dead individuals. In the following description, index j  
refers to individuals living in group ( 1=j ) or to solitary males ( 2=j ). 

Let  be the number of susceptible individuals of class j per km² during the 
epidemic,  the number of exposed but not infectious individuals,  the number of 
infectious individuals and  the number of dead individuals. The following epidemiological 
parameters are defined: 

jS

jE jI

jM

0t  : date corresponding to the beginning of the outbreak. The time unit is equal to 10 days 
(see Data transformation). 

0 j
ϕ  : natural, non epidemic, survival of class j individuals, per ten days. It is assumed to 
be constant over time. 

jr  : susceptibility of class j individuals to the virus 
x  : relative infectivity of solitary males compared to group-living individuals ( ). 
Individuals living in group are assumed to be equally or more contagious than solitary 
males, because when such an individual is infectious, other individuals of its group are 
likely to be also infectious, hence increasing the contamination probability of a healthy 
individual meeting it. 

[0,1]x∈

1
k  : mean duration of incubation period 

2

1
l  : mean duration of infectivity of solitary males 

1
z  : relative duration of infectivity of group-living individuals compared to solitary 

males ( ). Individuals living in group are assumed to be infectious during a longer 
period than solitary males to take into account the possible infectivity of other individuals 
of their groups. 

[0,1]z∈

We derive from the model described in Figure 1: 
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Let , , and  be the proportions of susceptible, exposed, infectious and dead 
individuals in the population, respectively. Note that here, the term population refers only to 
solitary males and group silverbacks (see Data transformation). Let N be the density (no. of 
individuals per km²) of the susceptible individuals of this population at . Equation (1) is 
equivalent to: 

js je ji jm

0t
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  (2) 

The incubation period was fixed at 7 days (0.7 time unit), the usual value observed in 
human during Ebola-Zaire outbreaks [S22–S24]. Given a particular set of epidemiological 
parameters and the following initial values:  

0 01 2 0.001i i= =  

01 0.593s = −
01i

2 20.407s i= −

0 0 0 01 2 2 2 0 ,e e m m= = = =

  (from [S6]) 

0 0
  (from [S6]) 

 
it was possible to evaluate , , , , , ,  and  for any value of t using Euler’s 
method. Considering that only susceptible and exposed individuals frequent the clearing, the 
apparent survival of class j individuals between occasions t and 

1s 2s 1e 2e 1i 2i 1m 2m

1t + could then be written as: 

tjtj

tjtj
ttj es

es

,,

1,1,
1, +

+
= ++

+→ϕ  

This model was implemented in EpiFit to obtain maximum likelihood estimates of , 
N , 

0t

jr x , , 2l 0i
ϕ , and . An estimate of the global survival of class j individuals was also 

computed as: 
z

, 1
1

j

q

glob j t t
t

ϕ ϕ → +
=

=∏  , 

with q: number of resighting occasions. From this expression we derived the estimate of 
Ebola-induced mortality for class j individuals: 

0

1 j

j

j
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tot qm

ϕ

ϕ
= − . 
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Model Spillover2 

 
This model assumed that between social units ape-to-ape transmission of Ebola virus 

was negligible compared to reservoir-to-ape transmission (Figure 1). The outbreak would then 
have resulted from a massive spillover from the reservoir [S2,S4,S17]. Two modifications of 
the equations of the former model sufficed to write model Spillover2:  

- Replacement of terms 1 2(jr N i x i s) j+ , which correspond to the contamination of 
susceptible individuals following contacts with infectious gorillas, by a new term: 

. The function ( )jr f t s j ( )f t  reflects the infectivity of the reservoir along with 
time. 

- Replacement of compartments I and M by a single new compartment. In model 
SEIR2, the time spent by gorillas in compartment I influences the probability of 
susceptible gorillas to be infected and hence the survival of gorillas. So, this 
duration can be estimated from the data, and has to be taken into account. 
Conversely, model Spillover2 assumes that no virus transmission occurred 
between social units. The duration of infectivity is then assumed to have no effect 
on gorilla susceptibility, and hence on gorilla survival. So this parameter cannot be 
estimated. This is the reason why the model reduces to a three compartment model. 

 
According to [S4], gorilla outbreaks would be favoured during the dry season. A 

recent paper proposing several species of fruit bats as a reservoir for EBOV hypothesises that 
fruit scarcity during this period could promote contacts between apes and bats, or that 
pregnancy of bats during this period could alter their immune functions and increase viral 
excretion [S20]. So, it seemed realistic to model reservoir infectivity with a bell-shaped f  
function. 

We chose to define f  as follows: 
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The meaning of the four parameters of this function can be easily understood (Figure 
S2). Note that ε  was chosen to be equal to 0.05. 

Finally, model Spillover2 could be written as follows: 
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As for model SEIR2, this model was implemented in EpiFit to obtain both its deviance 

and maximum likelihood estimates of , jr 0 j
ϕ , , l  and c . a

 
Once estimations were performed, we checked the two following important 

hypotheses of the statistical model: 
1. The survival of all the individuals living in group was assumed to be identical 
to that of group silverbacks. A simple, ad hoc, way to check this was to compare two 
samples of immatures and adult females of Lokoué population collected with the same 
effort before and after the epidemic. Thus, during 150 days of sighting before the 
epidemic, 299 females and immatures were identified. After the epidemic, during an 
equivalent period of 150 days of sighting, 13 females and immatures were identified. 
This led, roughly, to the estimate of the survival: 13 299 0.043= , a value that is inside 
the 95% confidence interval of the estimate based on group silverbacks. 
2. Data pooling is assumed not to bias survival estimates. However, this is 
theoretically challenged [S8]. The bias is function of the survival, sighting probability 
and degree of pooling [S8]. Here, estimates of daily sighting probability ranged from 0 
to 0.056. Estimates of daily survival ranged from 0.98 to 1. With such values, 10-day 
pooling intervals and for a stationary population, the bias, computed as proposed in 
[S8], was inferior to 1%. This showed that the effect of data transformation on 
survival estimates was probably negligible. 
 

Model simplification and comparison 
Models SEIR2 and Spillover2 were progressively simplified using an AIC based step-

by-step procedure (table S1). The most parsimonious models obtained were: 
- model SEIR2 with 

1 20 0ϕ ϕ=  
- model Spillover2 with 

1 20 0ϕ ϕ=  and 0a =  
The deviances of these models are very close (model SEIR2: deviance = 3384.23; 

model Spillover2: deviance = 3384.86). However, modelling survival according to model 
SEIR2 required 7 parameters, whereas only 5 parameters were required by model Spillover2. 
As 2 .AIC deviance nb of parameters= + × , the AIC of model Spillover2 is 4 points lower 
than that of model SEIR2. So, an AIC-based comparison of the models would lead to retain 
model Spillover2. 

However this comparison is irrelevant. Model Spillover2 cannot be rejected in the 
presence of model SEIR2 as an alternative hypothesis. Let’s imagine the virus spread among 
gorillas through ape-to-ape transmission according to model SEIR2. The proportion of 
infectious individuals along with time would then be bell-shaped. In this model, this 
proportion constrains the exposure of susceptible individuals exactly the same way as the 
reservoir does in model Spillover2. Consequently, the model Spillover2 can also fit the data 
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perfectly, provided that the shape of its function f  is close to that of the proportion of 
infectious individuals predicted by model Spillover2. So, even if the model SEIR2 is the right 
one, it is statistically impossible to prove. 

Let’s have look to the estimates obtained thanks to both models. Given estimates 
provides in Table S2, model SEIR2 predicts that at the epidemic peak,  was equal to 
0.21. This means that the maximum probabilities for a solitary male and for a group 
silverback to become exposed during a 10-day period were, respectively, 

 and 

1i x i+ 2

2 1 2( ) 0.45 0.21 0.095r N i x i+ = × = 1 1 2( ) 1.03 0.21 0.216r N i x i+ = × = . These values are low 
enough to be plausible. Exposition of susceptible individuals to EBOV could have occurred 
for instance during inter-unit encounters. As gorillas home-ranges partially overlap, such 
events are usual. Encounters have been described for instance in the vicinity of fruit trees 
[S25] and in forest clearings [S26]. In addition to inter-unit encounters, susceptible 
individuals could have come into contact with fresh, infectious carcasses. At last, as 
mentioned in ref. [S2], groups in which the silverback died probably disbanded, facilitating 
inter-unit transfers of exposed individuals. So our analysis reveals that ape-to-ape 
transmission of EBOV is a plausible scenario. 

The analyses based on model Spillover2 show that Lokoué outbreak could also have 
originated from a massive spillover from the reservoir. The necessary conditions for that 
scenario to have occurred include a delimited period of virus excretion from the reservoir, 
which duration is estimated to 322 days (95% IC: 130 days-539 days, see Table S3). As 
model Spillover2 made the assumption that there has been a single spillover at Lokoué, this 
long estimated duration could also have been obtained if two consecutive spillovers from the 
reservoir occurred. We tested this by fitting a model slightly different from model Spillover2. 
The function f  of this model had two peaks, such that: 
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with : abscissa of peak i ; : width of peak i and : height of peak 2. ic il 2h
The deviance of this last model is 3381.7. Its AIC is 3467.7, a value higher than that of 

model Spillover2. Consequently, the former model assuming a single peak is better than this 
one. 

Interestingly, the estimated duration of the spillover exceeds the duration of the dry 
seasons, which thus cannot be ecologically related to the occurrence of the spillover from the 
reservoir. 

Anyway, we would like to emphasise that these two mechanisms do not exclude each 
other. The ape-to-ape transmission hypothesis itself assumes an initial introduction of the 
virus from the reservoir. Even if we show that at a local geographic scale ape-to-ape 
transmission is likely to be important, things may be different at a larger geographic scale 
where natural barriers probably limit the efficiency of this way of spreading. 
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Figure S1. Ebola-positive carcasses around Lokoué site. 
Red dots show the location and date of sampling of carcasses found before the Lokoué 
outbreak (from [S2]) and the number of carcasses appears in parentheses. 
 



 13

 
Figure S2. Graphic representation of the function describing reservoir infectivity in model 

Spillover2. The value of parameter k was chosen to be equal to 0.05. 



 14

Table S1. Progressive AIC-based simplification of statistical models. In blue and orange: 
minimal models. 

p parametrization φ parametrization nb. of parameters deviance AIC 

t*g*m t*g 578 2980.81 4136.81 

(t*g)+m t*g 387 3137.47 3911.47 

t*g t*g 386 3175.17 3947.17 

(t*g)+m, 30 days constancy t*g 261 3302.51 3824.51 

t+g+m, 30 days constancy t*g 229 3332.59 3790.59 

t+m, 30 days constancy t*g 228 3334.96 3790.96 

t+g+m, 30 days constancy SEIR2 43 3384.02 3470.02 

t+g+m, 30 days constancy SEIR2, 
1 20 0ϕ ϕ=  42 3384.23 3468.23 

t+g+m, 30 days constancy SEIR2, 
1 20 0ϕ ϕ= , 1 2r r=  41 3391.82 3473.82 

t+g+m, 30 days constancy SPILLOVER2 42 3384.22 3468.22 

t+g+m, 30 days constancy SPILLOVER2, 
1 20 0ϕ ϕ=  41 3384.49 3466.49 

t+g+m, 30 days constancy SPILLOVER2, 
1 20 0ϕ ϕ= , 0a =  40 3384.93 3464.93 

t+g+m, 30 days constancy SPILLOVER2, 
1 20 0ϕ ϕ= , 0a = , 1 2r r=  39 3392.34 3470.34 

Notes : 
1. Variables on each side of “*” affect independently p or ϕ . The variable to the right of “+” 

has an additive effect on p (on a logit scale). For example, in model ( * )t g mp + , the sighting probabilities 
are computed independently for each sighting occasion and statistical group; for individuals sighted 
twice consecutively, the sighting probability corresponding to the second sighting occasion is 
increased by a constant , on a logit scale, irrespective of the values of t or g. dp

2. As there are 135 sighting-sighting intervals, model ( * ) ( * ),t g t gp ϕ , for example, is expected to 

have  parameters. This is higher than the value given in the table, because for 
occasions when observers were absent,  and 

( )135 134 2 538+ × =
p ϕ  were not allowed to vary. 
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Table S2. Maximum likelihood estimates and profile likelihood confidence intervals of 
parameters obtained with EpiFit software from the final model SEIR2. 

 

parameter maximum likelihood 
estimate 

profile likelihood estimate of 95% confidence 
interval  

t0 73.50 61.4 - 82.9 

Nr1 1.03 0.64 - 2.98 

Nr2 0.45 0.15 - 2.35 

r1 / r2 2.28 1.27 - 4.35 

1 20 0,ϕ ϕ  0.996 0.994 - 0.998 

1totm  0.97 0.95 - 0.98 

2totm  0.77 0.69 - 0.87  

l2 0.75 0.20 - 10.00 

z 0.25 0.00 - 1.00 

x 1.00 0.00 - 1.00 

Notes:  
1. t0 was arbitrarily set as time at which 1 ‰ of gorilla units of each class were infectious. So, the 

estimated value 73.5, corresponding to 0ctober 9, 2003, does not signify that the epidemic 
started exactly at this date. What is important to determine when the epidemic began is the 
variation of survival rate along with time, which does not depend on this arbitrary value (fig. 
2B). 

2. Confidence intervals of l2, z and x correspond to definition domain of these parameters. 
Basically, this is due to the too slight effect of the variation of these parameters on the survival 
curves. Data on individuals of categories I (infectious) and M (dead) would have been 
required to obtain better estimations. 

 
 
 
 

Table S3. Maximum likelihood estimates and profile likelihood confidence intervals of 
epidemiological parameters obtained with EpiFit software from the final model Spillover2. 
 

parameter maximum likelihood 
estimate 

profile likelihood estimate of 95% 
confidence interval 

r2 0.22 0.12 - 0.55 

r1 / r2 0.45 0.23 - 0.81 

1 20 0,ϕ ϕ  0.996 0.994 - 0.998 

1totm  0.97 0.92 - 0.98 

2totm  0.77 0.62 - 0.87 

c 93.4 90.3 - 97.9 
l 32.2 13.0 - 53.9 

 


